
Improving Incident Response of the American
Red Cross in the Greater Chicago Area by

Using Text Classification of Posts From
Twitter

Project Members:
Manager: Pavan Sistla

Scribe/Researcher: Evan De Broux
Coder: David Cho

Coder: Christopher Millan
Coder: Henry Post

Researcher/Coder: Trung Pham
Researcher: Raul Renteria
Researcher: Hasani Valdez
Researcher: Rena Haswah

April 2019

Contents

1 Abstract 2

2 Introduction 2

3 Text Classification Tool 3
3.1 Twitter Scraper . 4

3.1.1 Scraping by keywords 4
3.1.2 Scraping by keywords restricted by location 4
3.1.3 Scraping by account 5
3.1.4 Saving to a CSV file 6
3.1.5 Other features . 6

3.2 Proposed Classification Models Tested 6
3.2.1 Naive Bayes Classifier 7
3.2.2 Logistic Model . 8
3.2.3 Linear Support Vector Classification 10

4 Data Sources 11
4.1 Classified Tweets . 11
4.2 Twitter API . 12
4.3 UCI Machine Learning Repository: Humanitarian Data 12

5 Results: Text Classification Performance 12
5.1 Scraper Alone . 12
5.2 Comparing Model Performance 12

6 Conclusion 16

7 Additional Future Work 17
7.1 False Positives and Active Learning Strategy 17
7.2 Evaluating Reliability . 18

1

1 Abstract

Tweets on Twitter about true disasters are hard to easily detect and are
often hidden among a sea of irrelevant tweets about only tangentially related
content. We introduce a suite of tools to obtain tweets and attempt to classify
them as relevant or irrelevant with regards to house fires and other disasters
using a variety of machine learning models.

2 Introduction

The American Red Cross (ARC) is an organization has provided emer-
gency assistance, disaster relief, and disaster preparedness and education
across the United States since its founding in 1881. On average, the Ameri-
can Red Cross responds to more than 62,000 disasters a year, which is around
one disaster every 8 minutes, 90 percent of which are home fires. The truly
remarkable fact is that of their entire workforce that goes out of their way
to help others in need, 95 percent of their workers are volunteers. In the
Northern Illinois region, the ARC has received over 6,000 calls in the past
5 years and has provided humanitarian aide to approximately 75 percent of
those incidents.

Past IPRO groups who have worked for the ARC through their repre-
sentative, Jim McGowan, and our instructors, Bo Rodda and Matt Robison,
have given them useful insights into the data that the ARC has collected. The
summer of 2018 IPRO group has shown that the fires in the City of Chicago
are spatially correlated with each other. The fall of 2018 IPRO group built a
fairly accurate model in predicting fires at the neighborhood level using de-
mographic data from the Census Bureau and the City of Chicago Data Portal.
This gave the ARC useful insights to answer questions such as, “which neigh-
borhoods should we focus our education efforts in?” and “which groups of
people should we be targeting to better prepare them for fires?”

Despite some early exploration into the past project groups’ models, there
was a different point that piqued our research groups’ interest. Mr. McGowan
mentioned that a majority of the incidents that the ARC learns about come
from social media, with specific emphasis on Twitter. During a visit on
March 5th, 2019, Mr. McGowan noted that around 44 percent of the ARC’s
reported incidents come from Twitter. This led us to ask multiple questions.
How does the ARC identify reliable sources on these social media platforms?

2

Figure 1: The running count of incidents the ARC has in their records up
until August 2018. We notice that despite some fluctuations in number of
reported responses by month, they stay fairly steady. However, the number
of incidents that the ARC did not respond to has gradually increased over
this time period and additionally the ARC is unaware of many incidents in
the Chicago area. Our goal is to have the ARC to be aware of more of these
incidents.

Is it possible to evaluate the reliability of their social media sources? Can we
identify new sources that report incidents, or find where fires are occurring
before they are reported on more official sources? After a brainstorming
session, our group came up with a potentially useful tool: a program that
goes through geo-tagged tweets on Twitter and identifies those that are useful
to the disaster response efforts of the ARC.

3 Text Classification Tool

In creating this text classification tool, there are 2 (maybe more) processes
that we needed to create and fine-tune: the process of “scraping” the posts
from Twitter and the process of classifying the tweets.

3

3.1 Twitter Scraper

The Twitter Scraper aspect of our project is a tool that simply exists to
gather massive amounts of tweets with minimal effort. It exists as a Python
package on the Python Package Index site, and is easily to install. Currently,
it supports a handful of different methods to gather tweets.

3.1.1 Scraping by keywords

The first method that it can use to gather tweets is by keywords that the
tweets contain. The scraper can take a single keyword and a count of results,
or many keywords. Below is code showing the usage of the keyword-scraping
feature:

1 # Returns a t o t a l o f 600 tweets
2 r e s u l t s = sc rape r . s c rape te rms (
3 terms={” f i r e ” , ”#hou s e f i r e ” , ” f i redamage ” } ,
4 count=200
5)

Listing 1: Scraping multiple keywords

This snippet of code will return 200 tweets each about the term “fire”, the
hashtag “#housefire”, and the term “firedamage” for a total of 600 tweets.

3.1.2 Scraping by keywords restricted by location

The next feature our scraper has is one which limits the areas that the
scraper operates in. This is an augmentation of the scraper’s ability to search
for keywords and hashtags, and acts as a filter on that function.

This is important because most of the work that the ARC of Chicago
wishes to do takes place in or around Chicago.

Below is a code example of the same search, but restricted to within 50
miles of Chicago’s center.

1 # Returns 600 tweets that occur 50 mi l e s from Chicago
2 r e s u l t s = sc rape r . s c rape te rms (
3 geocode=”41.8297855 ,−87.666775 ,50mi” ,
4 terms={” f i r e ” , ”#hou s e f i r e ” , ” f i redamage ” } ,
5 count=200
6)

Listing 2: Geo-location scraping filter

4

This time, we still get 200 tweets per term, but only ones that have been
tagged within Chicago.

Instead of searching all of twitter for the three terms, only tweets that
individuals have chosen to tag with a geographical location within a 50 mile
radius of latitude 41.8, longitude -87.6, which is Chicago’s center.

3.1.3 Scraping by account

This feature allows one to scrape the most recently tweeted tweets by one
or more accounts.

This is to make it easy to repeatedly query accounts, or to get large
amounts of tweets from a set of accounts.

Below is a code example of the scraper getting the top 100 tweets from
various Twitter accounts that the RedCross account follows.

1 # Returns 300 tweets from 3 red c r o s s accounts , 100 each .
2 r e s u l t s = sc rape r . s c rape account s (
3 accounts={”@RedCross” , ”@NWSChicago” , ”@MABASIllinois” } ,
4 count=100
5)

Listing 3: Scraping by account

The syntax is very similar to that of the previous scraping methods. This
snippet of code would result in a total of 300 tweets, 100 from each Twitter
account.

5

3.1.4 Saving to a CSV file

This feature allows one to save scraped tweets to a comma-separated value
file, to perhaps later be analyzed in a spreadsheet program like Microsoft
Excel or be loaded into another data analysis program.

1 # Returns 300 tweets from 3 red c r o s s accounts , 100 each .
2 r e s u l t s = sc rape r . s c rape account s (
3 accounts={”@RedCross” , ”@NWSChicago” , ”@MABASIllinois” } ,
4 count=100
5)
6

7 # Saves above r e s u l t s to a CSV f i l e c a l l e d ’ output . txt ’
8 s c rape r . s a v e s t a t u s d i c t t o c s v (r e s u l t s , ’ r e d c r o s s twe e t s . csv ’)

Listing 4: Saving to CSV

3.1.5 Other features

The scraper allows you to scrape many more tweets than twitter normally
allows you at any one time, and will wait when it hits the Twitter API rate
limit to finish scraping tweets.

3.2 Proposed Classification Models Tested

The classifier that was built in this semester’s IPRO was fairly basic. The
classifier is a word-to-vector machine that tries to measure the dependence
of one unigram or bigram in relation to other unigrams or bigrams, and tries
to use those measurements to place a tweet in a classification. The research
group started by testing out different text classification models: a Naive
Bayes Classifier, a Linear Support Vector Classifier, a Logistic Classifier, and
a Random Forest classifier. There were no attempts to tune hyper-parameters
used for these classifiers, no additional tf-idf smoothing, no testing for using
additional leafs for the random forest classifier, among other features that
could have been tested due to time constraints. Working on “fine-tuning”
these parameters to generate better classifications for each model could be
taken up as future work. We discuss the basic mathematics behind the Naive
Bayes, LinearSVC, and Logistic classifiers below.

6

3.2.1 Naive Bayes Classifier

One of the text classification model will rely on a Naive Bayesian classi-
fier in order to classify the tweets that we pull through Twitter’s API. The
tweets can be assigned a label from a finite set based on the characteristics
of the tweet. The key is that the classifier will assume independence of the
characteristics of the tweet, independence of the words used to construct the
tweets, that would be used to determine the probability that the tweet should
be assigned one of the classes.

Mathematically, the probability that a tweet would belong to a certain
class, like “fire”, is conditional. If we assume the features of the tweet are
independent, have a tweet with n features that are relevant to the classifica-
tion of the tweet, this can be stored as a vector, x = (x1, x2, ..., xn). Say that
there are k different classes, {C1, C2, ..., Ck}, which the tweet could poten-
tially be associated with. Based on the features of the tweet, we can assign a
conditional probability to which class the tweet could belong to for any class
Ci, i ∈ {1, 2, ...k}:

P (Ci|x1, x2, ..., xn) (1)

The obvious problem with this line of thinking is that the potential num-
ber of features for a tweet can be relatively large. Using Bayes’ Theorem,
the probability a tweet being associated with class Ci, would be:

P (Ci|x) =
p(Ci)p(x|Ci)

p(x)
(2)

In other words, the probability that a tweet belongs to class i is equal to
the prior likelihood that a tweet belonged to class i times the likelihood
probability that this tweet belongs to class i, divided by the likelihood that
the specific tweet exists in that order. Note that the numerator is really the
only thing of interest here, as it is dependent on class k. Using the laws of
conditional probability, we can rewrite the joint probability of the model:

P (Ci, x1, ..., xn) = P (x1|x2, ..., xn, Ck)P (x2, ..., xn, Ck) (3)

= P (x1|x2, ..., xn, Ck)P (x2|x3, ..., xn, Ck)P (x3, ..., xn, Ck) = ... (4)

= P (x1|x2, ..., xn, Ck)P (x2|x3, ..., xn, Ck)...P (xn|Ck)P (Ck) (5)

Yet, naive conditional independence implies that for any feature xj is condi-
tionally independent of xl, for any j 6= l, which translates to:

P (xj|xj+1, ..., xn, Ck) = P (xj|Ck) (6)

7

This changes the conditional probability to:

P (Ck|x1, ..., xn) ∝ P (Ck, x1, ..., xn) (7)

= P (Ck)
n∏
i=1

P (xi|Ck) (8)

Using the independence assumptions, the probability of observing class Ck,
given features {x1, ..., xn} is:

P (Ck)
∏n

i=1 P (xi|Ck)
P (x1, ..., xn)

(9)

=
P (Ck)

∏n
i=1 P (xi|Ck)∑

k P (Ck)P (x1, x2, ..., xn|Ck)
(10)

This is how probabilities are solved for using any distribution to determine
P (Ck|x1, ..., xn). We are using the multinomial distribution to determine the
class probabilities. This means that P (x1, ..., xn|Ck) is written as:

P (x1, ..., xn|Ck) =
(
∑

i xi)!∏
i xi!

∏
i

pxiki (11)

where pki is the probability of class k associated with observation i.

3.2.2 Logistic Model

Logistic regression model classification is fairly simple. Define a single
logistic response variable to be yi, which is an ordinary Bernoulli random
variable, i.e. a binary response variable that can take on values of 0 or 1,
with:

P (yi = 1) = πiP (yi = 0) = 1− πi (12)

which means yi has a probability distribution of:

fi(yi) = πyii (1− πi)1−yi ,∀i = 1, ..., n (13)

which after compiling all yi for i = 1, 2, ..., n assuming independence
between observations yi has joint probability distribution:

g(y1, ..., yn) =
n∏
i=1

fi(yi) =
n∏
i=1

πyii (1− πi)1−yi (14)

8

To find the maximum likelihood estimates of the probability we can utilize
the logarithmic transformation:

ln(g(y1, ..., yn)) =
n∑
i=1

yiln(
πi

1− πi
) +

n∑
i=1

ln(1− πi) (15)

which yields:

1− πi =
1

1 + eβ0+β1xi1+...+βn−1xi,n−1
(16)

→ ln(
πi

1− πi
) = β0 + β1xi1 + ...+ βi,n−1xi,n−1 (17)

This quantity on the right outputs a probability that yi occurs given the
observed independent variables xi1, ..., xi,n−1,∀i ∈ {1, ..., n}. [1]

However, the case above does not involve multiple responses, or polyto-
mous logistic regression for nominal responses, but a single response. This is
necessary as we have multiple categories, but it also complicates the math-
ematics. Say we have J different responses categories, where yij ∈ {0, 1},
which is the case where case i has response j. We assume that only one
category can be selected for response:

J∑
j=1

yij = 1 (18)

We let the probability that case i is in category j be represented by P (yij =
1) = πij. For J polytomous categories, there would be J(J − 1)/2 pairs of
categories and thus the same amount of linear predictors of form:

π′ij′j = ln(
πij′

πij
) = X ′iβj′j,∀j′ < j; j′, j ∈ {1, ..., J} (19)

If we assume a baseline, like the “NO” category that classifies tweets that
are irrelevant to our search, then we can treat this as class J and we know
that the logits for the J th comparison are:

π′ijJ = ln(
πij
πiJ

) = X ′iβjJ ,∀j ∈ {1, 2, ..., J − 1} (20)

Since the comparisons are being made against this baseline, we assume these
probabilities are now:

π′ij = ln(
πij
πiJ

) = X ′iβj,∀j ∈ {1, ..., J − 1} (21)

9

We can always find the difference in any two responses from these J−1 logits
as for any k 6= l:

ln(
πik
πil

) = ln(
πik
πiJ
∗ πiJ
πil

) = X ′iβk −X ′iβl (22)

This yields the J − 1 logit expressions for the category probabilities in case
i:

πij =
eX
′
iβj

1 +
∑J−1

k=1 e
X′iβk

,∀j ∈ {1, ..., J − 1} (23)

[1]

3.2.3 Linear Support Vector Classification

We will define how a linear support vector machine works mathematically
in a simple case. Say we have a set of training data (xi, yi),∀i ∈ {1, ..., n}.
The only values that yi can take on are 1 or -1 which classifies the data
xi (the support vectors) into one of two classes, where xi has dimension p.
There will be some ”maximum margin hyperplane” such that we can divide
the data into the two classes for which the distance from the hyperplane to
the nearest vector xi is maximized. It is possible to write any hyperplane for
a set of points x as:

w · x− b = 0 (24)

where w and x are vectors of the same dimension and b is a real number.
w is the normal vector to the hyperplane. Let us assume that the data
that we have been given is linearly separable. Given this, the data could be
standardized to satisfy the equations one of two equations:

w · x− b = 1, (25)

or:
w · x− b = −1 (26)

depending on the classification of the data. The data also cannot fall into
this “hard margin”, so we need to add two constraints on the data:

w · x− b ≥ 1, given : yi = 1 (27)

w · x− b ≤ −1, given : yi = −1 (28)

10

This can be turned into a linear optimization problem:

minimize: ||w||
subject to: yi(w · x− b) ≥ 1, i = 1, ..., n

yi ∈ {0, 1}, j = 1, ..., n

2
If the data is not linearly separable, then a “soft margin”, then we have

a loss function which tries to compensate for this lack of separation:

max{0, 1− yi(wi · xi − b)} (29)

and we wish to minimize the function:

[
1

n

n∑
i=1

max{0, 1− yi(wi · xi − b)}] + λ||w||2, (30)

where λ is a parameter that weights the trade-off of increasing the margin
side so that the independent data vector xi is on the correct side of the
margin. Although the problem described here uses only two classes to try to
define these margins, we can generalize these arguments to an n-dimensional
hyperplane.

4 Data Sources

4.1 Classified Tweets

In order to train this model we had collect reliably classified tweets. In
order to do this, we gained access to a data set of thousands of classified
tweets from Axel Schulz and Christian Guckelsberger, which had classified
tweets into multiple “categories”: “fire”, “shooting”, “crash”, and “NO”
for neutral. We used a subset of these tweets that were associated with
locations in Chicago, New York, Boston, Memphis, and Seattle, as the types
of incidents could be assumed to be similar across these 4 metropolitan areas
and the local vernacular for describing these incidents should vary a great deal
across these American cities. Due to an imbalance in the number of incidents
in the “crash” and “flood” categories, we decided to focus on classifying the
“NO”, “fire”, and “flood” categories. [3]

11

4.2 Twitter API

In order to even classify tweets in the first place, we needed to pull tweets
from Twitter. Since we are associated with an educational institution, we
were able to pull 1500 tweets at a time every 15 minutes. Specifically, we tried
to find tweets that were geo-tagged to help the ARC identify the location of
incidents. These tweets would be stored on a MongoDB database, and could
be pulled by query.

4.3 UCI Machine Learning Repository: Humanitarian
Data

This is a sample of social media posts from Twitter and Instagram col-
lected by researchers from the University of Beirut. We used some 600 tweets
that classified fires and floods from these social media platform which should
improve the reliability of the text classification model’s performance. [2]

5 Results: Text Classification Performance

5.1 Scraper Alone

In early April 2019, Henry Post used our Twitter scraping tool to pull over
1,100 tweets geo-tagged 20 miles around Chicago without re-tweets in the
data set that keyword searched “fire”, “house fire”, “mudslide”, “landslide”,
and “emergency”. We eliminated “landslide” and “mudslide” from the data
set as Chicago is at an extremely low risk of having these events occur so close
to Chicago. After eliminating this data, we manually parsed through every
tweet to determine if it was a viable incident that the ARC could respond to.
After over an hour of work, only a handful of tweets were classified as one of
the categories used in the models. Although this did not take a significant
amount of time or human-power to finish the task, if you remove the geo-
tagged restriction on the scraped tweets this task becomes unfeasible.

5.2 Comparing Model Performance

We then evaluated the data we received from Schulz and Guckelsberger
[3] along with the UC-Irvine data set [2] to train a model using each of the
three methods described earlier in the paper using an 80/20 split of training

12

Figure 2: Number of tweets in each category used in training the model.

data and test data from these data sets. We additionally used a random
forest classifier to try to classify the tweets.

There were four different types of models that were under consideration.
Clearly, the random forest classifier was the least accurate classifier of the
four models tested, probably due to the low amount of leafs used for the clas-
sifier. The LinearSVC model showed the highest accuracy, and thus we will
choose to use the LinearSVC model to classify the tweets into the incident
categories. (3)

The confusion matrix (4) shows not only the accuracy of the model, but
also where the models misclassified the most, and what categories the models
misclassified to. These results are based off tweets the model has never seen
before. The model reads the text and outputs a prediction for that text, the
bottom side labeled Predicted; either ”fire”, ”flood”, or ”NO”. Then it com-
pares it to its actual label, the left side that says Actual. The matrix shows
that out of all the tweets in the test data set, the model correctly classified
108 as ”fire”, 115 as ”flood”, and 412 as ”NO”, our neutral class.

13

Figure 3: Results depicting the accuracy of the 4 classification models tested.

We chose to analyze the precision and recall scores of the models as
these essentially measure the true positive rate of the model (6). Precision
is equal to the true positive results over the divided by the number of true
positive and false positive results, in other words the total number of correctly
classified tweets over total number of predicted positive tweets. Precision
gives an indication of the what percentage of tweets are returned by the
model that are actually relevant to the search. Recall is the true positive
over the total number of true positive and false negative results, or the total

14

Figure 4: The confusion matrix for the data set being run through the model.
The squares in the upper right of the diagonal represent the number of false
negatives for each classification, the squares bottom left of the diagonal rep-
resent the false positives for each of the classifications, and the squares on
the diagonal represent the number of true positives/negatives for each clas-
sification.

number of tweets that were actual positives over the number of correctly
classified tweets. Unlike the precision, recall refers to the percentage of total
relevant results correctly classified by our algorithm.

15

Actual ↓/
Predicted →

Fire Flood NO/Neutral

Fire 108 2 38
Flood 1 115 11

NO/Neutral 0 0 412

Figure 5: We see that the the LinearSVC model does well correctly classifying
fire and flood social media posts. However, there is some difficulty in the
classification of the neutral class.

Figure 6: Quantitative measurements of the model evaluating accuracy of
categorical classifications.

The F1-score is defined to be:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(31)

simply the harmonic mean of precision and recall. It could be seen as a
weighted accuracy score, as it weights the accuracy if the categories are not
balanced, which in this case they are. Overall the model performs decently
given the current scores and the f1-score. A way to maximize the recall would
be to perform the active learning part of the project, meaning it will begin
to correctly classify tweets that are more similar to the ones the ARC would
see, than just generic ones from our data set.

6 Conclusion

Over the course of the semester, this IPRO group was able to build a tool
that could search Twitter by keyword or account to find potentially relevant
tweets that the ARC could use for their incident response. Despite having
the power of this tool, it was found to have too many irrelevant tweets to

16

manually parse through to be useful on its own. The research groups’ work
of finding machine learning classification algorithms to implement into the
scraper proved successful in accurately and precisely analyzing social media
posts from Twitter and placing them in the correct category. The analysis of
the models that were tested led the group to select the ‘LinearSVC‘ classifier
to analyze the tweets. This classification model did not have any special
features, thus it would take further research and fine-tuning to improve the
current classification tool. The classification model needs to be integrated
along with the scraper as well, in order to ensure the most efficient scraping
and classification of tweets. Despite the amount of additional work needed
to be done to have a fully functioning classification tool, in a barely a two
months of work this group laid the groundwork for the ARC to implement
a tool that it could use to increase the efficiency in its efforts to provide
humanitarian aid to those in the Chicago area who need it the most.

7 Additional Future Work

7.1 False Positives and Active Learning Strategy

The general problem of active learning can be described in this case as
follows: there is a set of tweets that our scraper will identify at some time i,
where i ∈ {1, 2, ..., n} and is a period of time, hour, day, week, etc. We have
a set of total tweets, T . At each time period, we will have 3 types of tweets:

1. A set of tweets that already has a known classification, say this subset
is called TL,i, where the subscripts stand for labeled at time i.

2. A set of tweets that has an unknown classification, call this subset TU,i.

3. A set of the tweets that has been picked to be labeled by the ARC or
our program, say this subset is TP,i.

The goal is to pick the best tweets for the third set TP,i. In this case, the
text classification model will have provided a first type of label, the type of
incident the text classifier has associated with the tweet. Now, the ARC may
be able to provide two types of labels to these tweets.

1. If the tweet’s classification label was correct.

2. Whether or not the tweet was used in a response to an incident.

17

In response to the first item, our historical database of tweets is fairly large,
so it seems unlikely that the classifications would be incorrect. However,
given the prevalence of bots and other trolls that could produce seemingly
authentic text, the ARC may want to identify these false positives. Second
item is also of interest, as it would be ideal if the ARC would also provide
the model with tweets that it found to be useful.

Although the issue with false positives is important, we can re-frame the
issue to combine two problems into one. The model will be identifying tweets
that are thought to be positive. We will make two assumptions. One is that
the false positives and true positives pulled by our Twitter scraper/classifi-
cation tool do not have the wrong incident type label. An incident could be
a false positive, this is true, but we are assuming that if something has an
initial label, say “fire”, then it will not be reclassified as a different incident
type, such as “flood”. The second is that the that it is likely that the ARC
would be able to find multiple reports of incidents when deciding on whether
or not they should respond to the incident, from sources such as OEMC,
IPN, or radioman911. The ARC contacts the local jurisdiction to see if they
can be of assistance to an incident as well. This active classification would
require an ARC volunteer to label the outputs from the scraper, and then to
label the tweet as “True” or “False”, i.e. the tweet was useful or the tweet
was a false flag. This would be a scenario of stream-based selective sampling,
as the tweets the model draws from Twitter are drawn one at a time from
Twitter by the model [4]. The ability to confirm or refute an incident report
is vital to being able to actively train the model.

From the tweets the scraper does receive, there will be a selection of
which tweets the ARC uses. We propose the addition of these tweets to the
database. The issue becomes if the ARC does not use tweets, but they are
still true positives when identifying incidents, we do not want to simply label
these as false positives. These classifications will “confuse” the model.

The decision whether or not to query new tweets that are pulled by the
classifier can be handled in a few ways. One could try to query using an
“informativeness measure, and make a biased random decision, such that
more informative instances are more likely to be queried” [4].

7.2 Evaluating Reliability

Once the tweets are stored to our database, it may not only be useful to
train our program to identify incidents from Twitter using new tweets/so-

18

cial media posts that it has labeled as corresponding to an incident in the
Northern Illinois region, but it may be smart to keep track of accounts that
are viewed as more useful in aiding the ARC’s responses. This would per-
haps require a ranking of accounts where accounts have been selected by the
scraper, and a way to score the usage of these accounts’ tweets for when they
are selected for use by the ARC. For this, we propose two simple measures
for these two account traits:

1. Actively keeping track of the number of times a certain account is
identified by the Twitter scraper

2. Keeping track of a percentage of the number of times an account had
their tweets used by the ARC when selected by our model out of the
total number of times the scraper selects a tweet from Twitter.

This is not the most complex measure, but future groups could look at
finding or developing measures of accuracy and/or precision to implement
into the active learning analysis.

References

[1] Nachtheim C. Neter J. Li W. Kutner, M. Applied Linear Statistical Mod-
els. McGraw-Hill Education, 2005.

[2] H. Mouzannar, Y. Rizk, and M. Awad. Multimodal damage identification
for humanitarian computing data set, 2016.

[3] A. Schulz, C. Guckelsberger, and F. Janssen. Semantic abstraction for
generalization of tweet classification, 2015.

[4] B. Settles. Active learning literature survey. Computer Sciences Technical
Report 1648, University of Wisconsin–Madison, 2009.

19

	Abstract
	Introduction
	Text Classification Tool
	Twitter Scraper
	Scraping by keywords
	Scraping by keywords restricted by location
	Scraping by account
	Saving to a CSV file
	Other features

	Proposed Classification Models Tested
	Naive Bayes Classifier
	Logistic Model
	Linear Support Vector Classification

	Data Sources
	Classified Tweets
	Twitter API
	UCI Machine Learning Repository: Humanitarian Data

	Results: Text Classification Performance
	Scraper Alone
	Comparing Model Performance

	Conclusion
	Additional Future Work
	False Positives and Active Learning Strategy
	Evaluating Reliability

